
22th December 2020

-

version v2.0

Smart Contract Security Audit and General Analysis

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved

Table of Contents

2 Issues (0 Critical, 0 Major, 2 Minor) Found

Table of Contents

About HAECHI AUDIT

01. Introduction

02. Summary

Issues

03. Overview

Contracts Subject to Audit

04. Issues Found

MINOR : StakingRewards/CurveRewards#notifyRewardAmount() does not check if
it received reward. (Found - v1.1)(Out-of-Scope - v2.0)

MINOR : StakingRewards/CurveRewards#notifyRewardAmount() can decrease
rewardRate (Found - v1.1)(Out-of-Scope - v2.0)

TIPS : FCompoundActions does not have function to deposit ether when used
without DSProxy or Proxy (Found - v1.0)(Acknowledged - v2.0)

05. Disclaimer

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 1

About HAECHI AUDIT

HAECHI AUDIT is a global leading smart contract security audit and development firm
operated by HAECHI LABS. HAECHI AUDIT consists of professionals with years of
experience in blockchain R&D and provides the most reliable smart contract security audit
and development services.

So far, based on the HAECHI AUDIT's security audit report, our clients have been
successfully listed on the global cryptocurrency exchanges such as Huobi, Upbit, OKEX,
and others.

Our notable portfolios include SK Telecom, Ground X by Kakao, and Carry Protocol while
HAECHI AUDIT has conducted security audits for the world's top projects and enterprises.

Trusted by the industry leaders, we have been incubated by Samsung Electronics and
awarded the Ethereum Foundation Grants and Ethereum Community Fund.

Contact : ​audit@haechi.io
Website : audit.haechi.io

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 2

mailto:audit@haechi.io

01. Introduction

This report was written to provide a security audit for the Furucombo smart contract.
HAECHI AUDIT conducted the audit focusing on whether Furucombo smart contract is
designed and implemented in accordance with publicly released information and whether
it has any security vulnerabilities.

The issues found are classified as​ , , or according to
their severity.

HAECHI AUDIT advises addressing all the issues found in this report.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 3

Critical issues are security vulnerabilities that MUST be addressed in
order to prevent widespread and massive damage.

Major issues contain security vulnerabilities or have faulty
implementation issues and need to be fixed.

Minor issues are some potential risks that require some degree of
modification.

Tips ​could help improve the code’s usability and efficiency

02. Summary

The code used for the audit can be found at GitHub

1. https://github.com/dinngodev/compound-actions-contract
 commit hash : “d223d77b1eec1905ec8884e7a913b3aafa561cd0”

2. https://github.com/dinngodev/staking-adapter-contract
 commit hash : “61b1f0adf7e37d15b471c55f0c9735398a030b73”.

Issues

HAECHI AUDIT has 0 Critical Issues, 0 Major Issues, and 2 Minor Issue; also, we included 1
Tip category that would improve the usability and/or efficiency of the code.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 4

Severity Issue Status

StakingRewards/CurveRewards#notifyRe
wardAmount() does not check if it received

reward

(Found - v1.1)
(Out-of-Scope -

v2.0)

StakingRewards/CurveRewards#notifyRe
wardAmount() can decrease rewardRate

(Found - v1.1)
(Out-of-Scope -

v2.0)

FCompoundActions does not have function

to deposit ether when used without
DSProxy or Proxy

(Found - v1.0)
(Acknowledged -

v2.0)

https://github.com/dinngodev/compound-actions-contract
https://github.com/dinngodev/staking-adapter-contract

03. Overview

Contracts Subject to Audit

● Compound-Actions
○ Config.sol
○ Migrations.sol
○ Cache.sol
○ Registry.sol
○ Proxy.sol
○ LibCache.sol
○ DSAuth.sol
○ DSGuard.sol
○ DSGuardFactory.sol
○ FCompoundActions.sol
○ HSCompound.sol
○ HandlerBase.sol

● Staking-Adapter
○ StakingRewardsAdapterFactory.sol
○ StakingRewardsAdapter.sol
○ CurveRewards.sol
○ StakingRewards.sol
○ Owned.sol
○ RewardsDistributionRecipient.sol
○ SynthetixPausable.sol

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 5

04. Issues Found

MINOR : StakingRewards/CurveRewards#notifyRewardAmount() does not
check if it received reward. ​(Found - v1.1)(Out-of-Scope - v2.0)

[StakingRewards.sol]

[CurveRewards.sol]

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 6

135. function notifyRewardAmount(uint256 reward)
136. external
137. onlyRewardsDistribution
138. updateReward(address(0))
139. {
140. if (block.timestamp >= periodFinish) {
141. rewardRate = reward.div(rewardsDuration);
142. } else {
143. uint256 remaining = periodFinish.sub(block.timestamp);
144. uint256 leftover = remaining.mul(rewardRate);
145. rewardRate = reward.add(leftover).div(rewardsDuration);
146. }
147.
148. // Ensure the provided reward amount is not more than the balance in the contract.
149. // This keeps the reward rate in the right range, preventing overflows due to
150. // very high values of rewardRate in the earned and rewardsPerToken functions;
151. // Reward + leftover must be less than 2^256 / 10^18 to avoid overflow.
152. uint256 balance = rewardsToken.balanceOf(address(this));
153. require(
154. rewardRate <= balance.div(rewardsDuration),
155. "Provided reward too high"
156.);
157.
158. lastUpdateTime = block.timestamp;
159. periodFinish = block.timestamp.add(rewardsDuration);
160. emit RewardAdded(reward);
161. }

181. function notifyRewardAmount(uint256 reward)
182. external
183. onlyRewardDistribution
184. updateReward(address(0))
185. {
186. if (block.timestamp >= periodFinish) {
187. rewardRate = reward.div(DURATION);
188. } else {
189. uint256 remaining = periodFinish.sub(block.timestamp);
190. uint256 leftover = remaining.mul(rewardRate);
191. rewardRate = reward.add(leftover).div(DURATION);
192. }
193. lastUpdateTime = block.timestamp;
194. periodFinish = block.timestamp.add(DURATION);
195. emit RewardAdded(reward);
196. }

Problem Statement

StakingRewards/CurveRewards#notifyRewardAmount() does not check if it has received
the reward to distribute.

StakingRewards do check if rewardRate is too high but CurveRewards does not.

It can lead to a high reward rate for farmers who get rewards faster than others. And can
make others unable to earn the rewards.

Since this function is designed to be only called by admin, this error can only be done by
admin.

Recommendation

Receive reward token by transferFrom when function is called.

Update

[v2.0] - Furucombo team has confirmed that StakingRewards/CurveRewards contract is
added for the unit test purpose.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 7

MINOR : StakingRewards/CurveRewards#notifyRewardAmount() can
decrease rewardRate ​(Found - v1.1)(Out-of-Scope - v2.0)

Problem Statement

StakingRewards/CurveRewards#notifyRewardAmount() does not check if the rewardRate
decreases after notification. Since it updates rate to be ​ (leftoverRate + notified
reward)/duration​ when previous reward is not finished, if admin keeps notifying with zero
reward, it can lead to continuous decrease on reward rate,

Since this function is designed to be only called by admin, this error can only be done by
admin.

Recommendation

Check if rewardRate increases after notifying reward.

Update

[v2.0] - Furucombo team has confirmed that StakingRewards/CurveRewards contract is
added for the unit test purpose.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 8

TIPS : ​ FCompoundActions does not have function to deposit ether when
used without DSProxy or Proxy ​(Found - v1.0)(Acknowledged - v2.0)

Although FCompoundActions is intended to work as a delegated function logic instead of a
standalone smart contract, it should be noted that FCompoundActions does not have any
function to deposit Ether. Since the expected scenario of using the FCompoundActions is
through proxies, it is not an issue that requires change.

Update

[v2.0] - Furucombo team has confirmed that this behavior is intended.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 9

05. Disclaimer

This report is not an advice on investment, nor does it guarantee adequacy of a business
model and/or a bug-free code. This report should be used only to discuss known technical
problems. The code may include problems on Ethereum that are not included in this
report. It will be necessary to resolve addressed issues and conduct thorough tests to
ensure the safety of the smart contract.

COPYRIGHT 2020. HAECHI AUDIT. all rights reserved 10

